Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide.

نویسندگان

  • Yang Liu
  • Andrew J Metcalf
  • Victor Torres Company
  • Rui Wu
  • Li Fan
  • Leo T Varghese
  • Minghao Qi
  • Andrew M Weiner
چکیده

We demonstrate an on-chip four-wave mixing (FWM) scheme in a silicon nanowaveguide to scale the bandwidth of a frequency comb generated by phase modulation of continuous-wave (CW) lasers. The FWM process doubles the bandwidth of the initial comb generated by the modulation of a CW laser. For example, a wavelength-tunable frequency comb with >100 comb lines spaced by 10 GHz within a bandwidth of 5 dB is generated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.

We introduce a new cascaded four-wave mixing technique that scales up the bandwidth of frequency combs generated by phase modulation of a continuous-wave (CW) laser while simultaneously enhancing the spectral flatness. As a result, we demonstrate a 10 GHz frequency comb with over 100 lines in a 10 dB bandwidth in which a record 75 lines are within a flatness of 1 dB. The cascaded four-wave mixi...

متن کامل

Triply resonant coherent four-wave mixing in silicon nitride microresonators.

Generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depend on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but...

متن کامل

Optical frequency comb generation from aluminum nitride microring resonator.

Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, fre...

متن کامل

Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides.

We demonstrate highly broad-band frequency conversion via four-wave mixing in silicon nanowaveguides. Through appropriate engineering of the waveguide dimensions, conversion bandwidths greater than 150 nm are achieved and peak conversion efficiencies of -9.6 dB are demonstrated. Furthermore, utilizing fourth-order dispersion, wave-length conversion across four telecommunication bands from 1477 ...

متن کامل

Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide.

We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 39 22  شماره 

صفحات  -

تاریخ انتشار 2014